The Safe Use of Biological Safety Cabinets

Laboratory Training Module

by Environmental Health and Radiation Safety (EHRS)

Biological Safety Cabinets (BSCs)

- What is a Biological Safety Cabinet (BSC)?
 - Primary containment for working safely with infectious materials
 - Containment for biological aerosol generating procedures
- Designed to provide protection to:
 - Personnel
 - Product
 - Environment

HEPA Filter

• BSC's have High Efficiency Particulate Air (HEPA) filters in their exhaust and/or supply systems

Minimum filter efficiency = 99.97% removal at 0.3μm

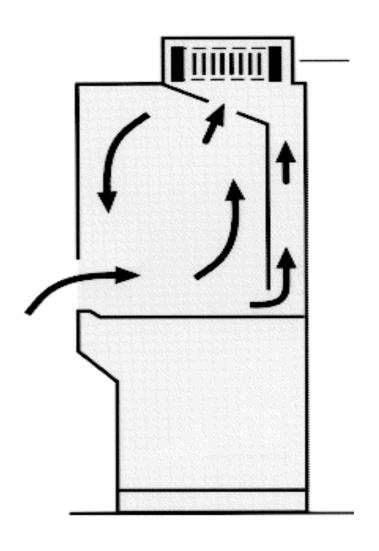
BUT, particles both larger and smaller are removed with even

greater efficiency!!!

Filter construction:

- Folded cellulose/borosilicate
- Metal/wood frame
- Epoxy/polyurethane sealants

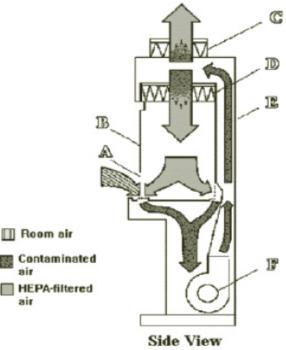
Types of BSCs


- 3 Classifications of Biological Safety Cabinets:
 - Class I
 - Class II most commonly used at Penn
 - Class III (glove box)

If you are not sure which kind you have:

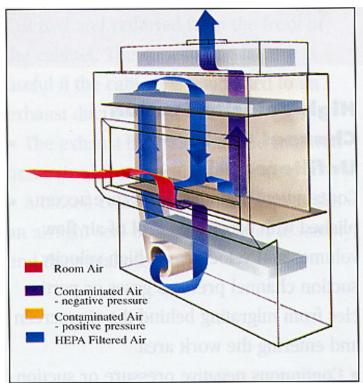
- Should be written on the front panel of the cabinet
 OR
- Call EHRS

Class I BSC


- Personnel Protection: Yes (inward airflow through sash opening)
- Product Protection: No
 (draws unfiltered laboratory air directly over work surface)
- Environmental protection: Yes (HEPA filtration of exhaust air)
- Suitable for work with agents in Risk Groups 1, 2 or 3
 - When NO product protection is required

Class II BSC

- Personnel Protection: Yes (inward airflow through sash opening)
- Product Protection: Yes
 (downward HEPA-filtered laminar airflow over work surface)
- Environmental protection: Yes (HEPA filtration of exhaust air)
- Appropriate for use with biohazardous materials and cell cultures

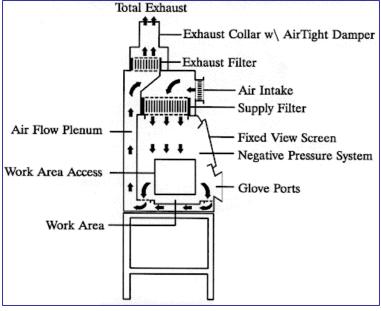

Class II Recirculating BSCs (Types A1 and A2)

- Recirculates 70% of HEPA filtered air to work surface
- Exhausts 30% of HEPA filtered air to lab
- Use for work with:
 - Biohazardous (or potentially infectious) materials
 - Cell culture
- DO NOT use for work with:
 - Volatile toxic chemicals
 - Vapors may build up presenting fire hazard
 - Vapors will be recirculated into room
 - Radionucleotides

Class II Hybrid BSCs (Type B1)

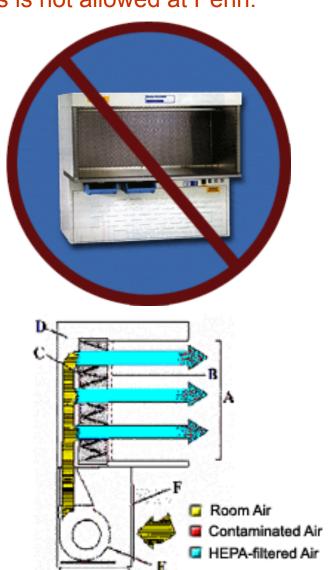
- Recirculates 30% of airflow to <u>FRONT</u> part of work surface
- Exhausts 70% airflow via building exhaust system from <u>BACK</u> part of work surface
- Use for work with
 - Biohazardous (potentially infectious) materials
- May work with the following in the BACK (exhausted) part of surface
 - Volatile toxic chemicals
 - Tracer amounts of radionucleotides
 - Contact EHRS before initiating work

Class II Total Exhaust BSCs (Type B2)


- Hard ducted to building exhaust system
 - 100% of airflow (HEPA filtered) exhausted to outside
- Use for work with:
 - Biohazardous (or potentially infectious) materials
 - Handling cytotoxic or hazardous drugs
 - Volatile toxic chemicals (moderate amounts)
 - Radionucleotides

Class III BSC (Glove Box)

- Personnel Protection: Yes
 (work is performed through glove ports)
- Product Protection: Yes
 (gas-tight absolute containment enclosure)
- Environmental protection: Yes (exhaust and supply air is HEPA filtered)
- Commonly used at BSL 3 or 4*
 *There are no Level 4 facilities available on Penn's campus


Clean Benches are NOT BSCs

Use of clean benches for biomedical procedures is not allowed at Penn.

- •Personnel Protection: *No* (air inside cabinet blown directly out at user)
- •Product Protection: Yes (HEPA-filtered airflow over work surface)
- •Environmental protection: No (no filtration of exhaust air)

•MUST NOT be used with:

- Biohazardous (or potentially infectious) materials (including cell culture)
- Chemicals
- Radionucleotides

Before BSC Use

 Ensure window sash is at proper operating height (approx. 8-10 in.)

 Turn on blower and fluorescent light at least 15 min. prior to use

Wipe down surfaces with appropriate disinfectant

Before BSC Use

- Monitor the BSC's alarms, pressure gauges or flow indicators for any major fluctuations
 - ≥10% in magnehelic fluctuation
 - other changes indicating possible problems
- Do not change
 - baffle
 - damper
 - speed control settings
 - exhaust low flow alarm settings (if equipped)

Before BSC Use

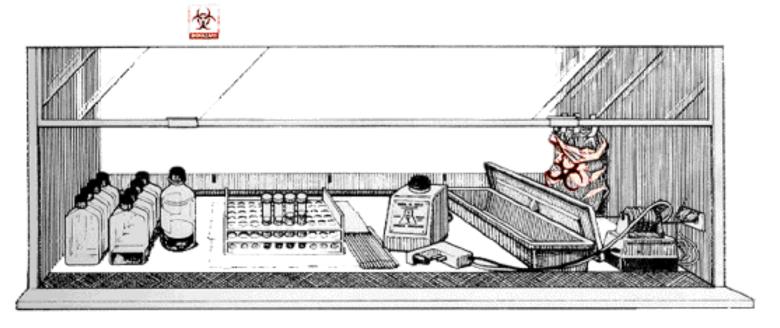
- Protect vacuum system from aerosolized microorganisms
- Use configuration below and place in secondary containment (in case of spills)

In-line HEPA filter (C) protects the Vacuum system (D)

Available from Fisher Scientific

During BSC Use

- Keep front, side, and rear air grilles clear
 - Obstructions disturb airflow compromising product and personnel protection
- Load only the materials required for the procedure
 - Cabinet is not made for storage of equipment or supplies
- Avoid frequent motions in and out of cabinet
 - Disrupts airflow



During BSC Use

 Arrange work surface from "clean" to "dirty" from left to right (or front to back)

Example:

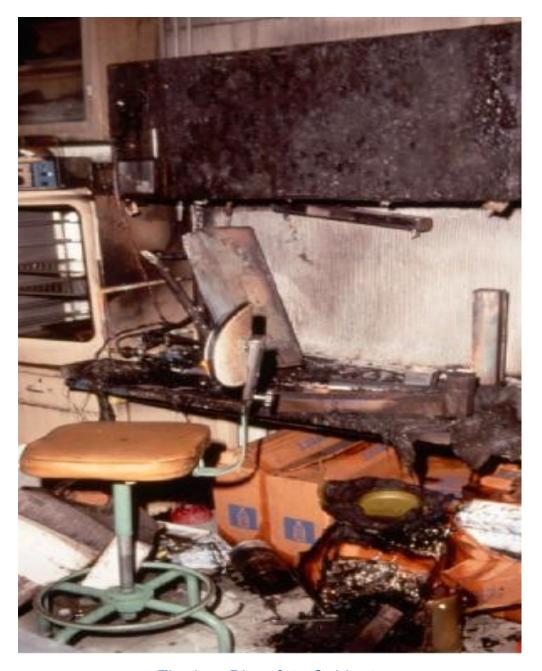
- Sterile cell cultures (left)
- Inoculate cultures (center)
- Contaminated pipettes discarded in shallow pan with disinfectant (right)
- Other contaminated materials placed in biohazard bag (right)

No Open Flames in BSC

- DO NOT use open flames inside the cabinet
 - Not needed in the near microbe-free environment of BSC
 - Creates turbulence disrupting air patterns
 - Heat may damage HEPA filters or cause fire

Alternatives to continuous open flame Bunsen Burners:

Touch-o-Matic burner


Bacticinerator

Glass Bead Sterilizer

Laboratory Gas Burners

Risk of fire from using open flames in BSC

Fire in a Biosafety Cabinet

During BSC Use

- If a spill occurs in cabinet during use:
 - Keep BSC running to contain aerosols
 - Cover spill with disinfectant soaked towels
 - Allow 20 min. contact time
 - Dispose of clean-up or other contaminated material in biohazard waste
- If spill overflows into catch basin under cabinet surface:
 - · Ensure drain valve is closed
 - Pour disinfectant onto surface and through grilles
 - Allow 20-30 min. contact time
 - Soak up surface with paper towels
 - Connect flexible tubing to drain valve
 - Drain basin into disinfectant filled drain pan
 - Dispose of exposed materials in biohazard waste

After BSC Use

- Leave BSC blower running for at least 15 min. after use
- Wipe down cabinet surfaces with appropriate disinfectant
- UV lights are not necessary in BSCs
 - Only effective if cleaned weekly to remove dust/dirt AND checked periodically with a meter
 - MUST turn off when room is occupied to protect eyes and skin

Maintenance/Certification

- BSCs must be tested and certified annually or if:
 - A new cabinet is being installed
 - A cabinet has been moved
 - A cabinet is in need of troubleshooting or repairs
- ALL maintenance and certification conducted by an approved university-wide vendor
 - Never attempt repairs yourself
 - DO NOT contract with another vendor

Maintenance/Certification

 EHRS maintains a detailed inventory of BSCs on campus

- Contact a biosafety officer if you:
 - Plan to purchase a new BSC
 - Plan to move a BSC
 - Need help selecting a location for your BSC
 - Are encountering difficulties with scheduling or work completion

REMEMBER:

Biosafety Cabinets will only protect YOU, your PRODUCTS, and the EVIRONMENT if used properly!

So:

DO NOT use if out of certification

DO NOT clutter grilles

DO NOT overcrowd cabinet

DO NOT put head inside cabinet

DO NOT disrupt airflow with quick motions

DO follow practices/procedures outlined in training