
Lab:
(Command
Line)
Branches

Estimated time: 20 minutes

Note: This lab assumes that you are using a command line. If you would prefer to use
Sourcetree, there are separate instructions.

In this lab, you will:

1. Create and checkout a branch.
2. Create commits on the branch.
3. Checkout an old commit.
4. Delete a branch.

1:
Create
and
checkout
a
branch.

1. Create a local repository named 	projectc	. If you need help, please refer to the previous
labs.

2. Create a commit with a 	fileA.txt	 file containing a string "feature 1". The commit
message should be "add feature 1". This commit should be made on the 	master	 branch.

3. Use 	git	branch	 to verify that you have a single branch in your local repository, and its
name is 	master	. Use 	git	log	--oneline	--graph	 to verify that you are currently on the
most recent commit. You should see 	HEAD	->	master	 on the most recent commit.

4. Create and checkout a branch off of the latest master commit named "featureX". You can
do this with two command or one command:

#	two	command	approach
$	git	branch	featureX
$	git	checkout	featureX

#	one	command	approach
$	git	checkout	-b	featureX

5. Execute 	git	branch	 to verify that you have created a 	featureX	 branch, and that it is the
currently checked out branch. Execute 	git	log	--oneline	--graph	 to verify that the
	featureX	 branch is the current branch- you should see 	HEAD	->	featureX	. Notice that
the latest commit now has both the 	master	 and the 	featureX	 branch labels. Because
	featureX	 is the current branch, the next commit you make will be to this branch.

Congratulations, you have created and checked out a branch.

2:
Create
commits
on
the
branch.

1. Now that you have created and checked out the 	featureX	 branch, you can do some
work on the project without affecting the 	master	 branch. In your local repository, create
a
commit on the 	featureX	 branch with the following:

modify 	fileA.txt	, adding "feature mistake" directly under the line "feature 1"
add a commit message of "add feature mistake"
(If you need a refresher on how to use 	git	add	 and 	git	commit	 to create a commit,
see the previous labs.)

2. Execute 	git	log	--oneline	--graph	 and view your commit graph (the asterisks). You
should see a straight line, with your 	featureX	 branch label and "add feature mistake"
commit message on the most recent commit. You should see that the 	featureX	 branch
is checked out (HEAD	->	featureX).

3. Execute 	git	checkout	master	 to checkout the master branch. Your working tree will be
updated with the older version of 	fileA.txt	. View the contents of that file and verify that
you do not see your "feature mistake" content. The master branch is unaware of the work
that you did on the 	featureX	 branch.

4. Execute 	git	log	--oneline	--graph	. Notice that only information about the current
branch is listed. Also notice that the current branch is the 	master	 branch 	HEAD	->
master	. If you changed the working tree and committed right now, the commit would be
to the 	master	 branch.

5. Execute 	git	log	--oneline	--graph	--all	. Add 	--all	 shows all of the local branches.
Now you can see your 	featureX	 branch, and the 	featureX	 branch has a commit more
current than the commit at the tip of the 	master	 branch.

6. Change
back to the 	featureX	 branch by checking it out.

7. Create
another
commit on the 	featureX	 branch with the following:

modify 	fileA.txt	, under "feature 1", change the line "feature mistake" to "feature
bigger mistake"
add a commit message of "add feature bigger mistake"

8. Execute 	git	log	--oneline	--graph	--all	 and view your commit graph. You should
again see a straight line, with two commits on the 	featureX	 branch.

Congratulations, you have created commits on the 	featureX	 branch.

3:
Checkout
an
old
commit.

1. Let's say you want to view the first change that we made on the 	featureX	 branch.
Checkout the first commit you made on the 	featureX	 branch ("add feature mistake"). Do
this by executing 	git	checkout	HEAD~	. The appended ~ means "parent of the commit".
Git will warn you that you are entering a detached HEAD state. This is because your HEAD
reference points directly at the SHA-1 of a commit, instead of to a branch label. Read
Git's message, it is informative.

2. Verify that you are seeing the older version of 	fileA.txt	 ("feature mistake") in your
working tree. Execute 	git	log	--oneline	--graph	--all	 and notice that the current
commit has a HEAD tag with no branch label. You are in a detached HEAD state. We are
only viewing the old commit, so we are OK. If we wanted to create new commits based on
this commit, we should create a branch right now. We don't need to do that though.

3. Checkout the 	master	 branch to get out of the detached HEAD state.

Congratulations, you have checked out an old commit.

4:
Delete
a
branch.

Well, our great featureX idea might not have been so great after all. We went from "big
mistake" to "bigger mistake". We will delete the 	featureX	 branch without merging it
into 	master	 (you will learn about merging later).

1. Try to delete the 	featureX	 branch using 	git	branch	-d	featureX	. You will see that Git
won't let you delete this branch, because it has not been merged. Your two commits on
the 	featureX	 branch would become "dangling commits" and would eventually be
garbage-collected by Git. In the Git message, notice that it says that if you are sure that
you want to delete the branch, use the 	-D	 option with the 	git	branch	 command.

2. Delete the 	featureX	 branch again, but this time use the 	-D	 option. The 	featureX	
branch is deleted.

3. View the commit graph and verify that you are back to having only a 	master	 branch.

4. (If you are interested) Want to "undo" the deleting of the 	featureX	 branch? Execute 	git
reflog	. This shows the local history of HEAD references. Since Git doesn't immediately
delete commits, you can find the SHA-1 of your most recent 	featureX	 branch there.
Copy the SHA-1 of the "add feature bigger mistake" commit. Execute 	git	checkout	-b
featureX	[SHA-1	YOU	COPIED]	. View your commit graph and verify that your 	featureX	

branch has returned. Delete the 	featureX	 branch again.

Congratulations, you have deleted a branch and completed this lab.

Copyright © 2018 Atlassian

