
Lab:
(Command
Line)
Resolving
Merge
Conflicts

Estimated time: 10 minutes

Note: This lab assumes that you are using a command line. If you would prefer to use
Sourcetree, there are separate instructions.

In this lab, you will:

1. Create branches that contain a merge conflict.
2. Merge the branches, resolving the merge conflict.

1:
Create
branches
that
contain
a
merge
conflict.

1. Create a local repository named 	projectd	.

2. Create a commit in your 	projectd	 repository with a 	fileA.txt	 file containing a string
"feature 1". The commit message should be "add feature 1". This commit should be on
the 	master	 branch.

3. Create and checkout a branch off of the latest master commit named "feature2".

4. In your local repository, create
a
commit on the 	feature2	 branch with the following:

modify 	fileA.txt	, adding "feature 2" directly under the line "feature 1"
add a commit message of "add feature 2"

5. Checkout the 	master	 branch.

6. Create a commit on the 	master	 branch with the following:

modify 	fileA.txt	, adding "feature 3" directly under the line "feature 1"
add a commit message of "add feature 3"
Congratulations, you have created branches that contain a merge conflict. The
	master	 branch and the 	feature2	 branch have modified the same hunk of
	fileA.txt	 in different ways.

2:
Merge
the
branches,
resolving
the
merge
conflict.

1. Verify that the 	master	 branch is checked out.

2. Execute 	git	merge	feature2	 and attempt to merge in the 	feature2	 branch. You should



see that there is a merge conflict.

3. Execute 	git	status	 to see that Git has modified 	fileA.txt	.

4. View the 	fileA.txt	 file. Notice the conflict markers in the file. That is the part of the
merge that Git couldn't automatically resolve.

5. Rather than fix the conflict right now, abort the merge process by executing 	git	merge	--
abort	.

6. Verify that you are back to the state before the merge attempt, with no uncommitted files
in the working tree.

7. This time, let's resolve the merge conflict. Repeat the merge attempt. You should again
see a merge conflict.

8. Edit
	fileA.txt	 to resolve the merge conflict. Remove the conflict markers and make
sure the file contains three lines of text: "feature 1", "feature 2" and "feature 3".

9. Add 	fileA.txt	 to the staging area so that the fixed version of the file is part of the merge
commit.

10. Commit the merge. Accept the default merge commit message.

11. Delete the 	feature2	 branch label.

12. Verify that you have a commit graph with a merge commit containing all three features.

13. You will not use the 	projectd	 repository in future labs. You can delete it.

Congratulations, you have resolved a merge conflict and completed this lab.

Copyright © 2018 Atlassian


